Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure

نویسندگان

  • Sirong Zhu
  • D. L. Chung
چکیده

A theory is provided for piezoresistivity in carbon fiber reinforced cement (with and without embedded steel reinforcing bars) under flexure (three-point bending). The phenomenon, which involves the reversible increase of the tension surface electrical resistance and the reversible decrease of the compression surface electrical resistance upon flexure, allows strain sensing. The theory is based on the concept that the piezoresistivity is due to the slight pull-out of crack-bridging fibers during crack opening and the consequent increase in the contact electrtical resistivity of the fiber-matrix interface. This work is an extension of prior theory, which concerns the effect of uniaxial loading on the volume resistance. The extension requires modeling the surface resistance and its change under flexure. The theoretical results on the piezoresistivity, both with and without rebar, are in good agreement with prior experimental results. Differences between theoretical and experimental results are probably due to minor damage and rebar debonding during flexure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical model of piezoresistivity for strain sensing in carbon fiber polymer–matrix structural composite under flexure

An analytical model is provided for the piezoresistive phenomenon of continuous carbon fiber polymer–matrix composite under flexure. This phenomenon allows strain sensing and entails reversible increase of the tension surface resistance and reversible decrease of the compression surface resistance during flexure. The model considers the surface resistance change to be due to change in the degre...

متن کامل

Strain and Damage Sensing Property of Self-compacting Concrete Reinforced with Carbon Fibers

Present paper investigated the strain and damage sensing property on concrete cubes embedded with carbon fibers. Concrete cubes of dimension 150 mm have been casted with different concentration of carbon fibers to study the strain and damage sensing property under cyclic loading that can be further used for health monitoring as non-destructive testing (NDT) approach. All the specimens were test...

متن کامل

Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical- resistance-based through-thickness strain sensing

Piezoresistivity (change of the volume electrical resistivity with strain) in continuous carbon fiber polymer-matrix structural composites allows electrical-resistance-based strain/ stress sensing. Uniaxial through-thickness compression is encountered in fastening. As shown for a 24-lamina quasi-isotropic epoxy-matrix composite, compression results in (i) strain-induced reversible decreases in ...

متن کامل

Piezoresistive Cement-based Materials for Strain Sensing

Cement-based materials that exhibit piezoresistivity with sufficient magnitude and reversibility contain electrically conductive fibers. The phenomenon allows the materials to sense their own strain. The fibers are preferably discontinuous. Carbon fibers (15mm diameter) are most effective. Steel fibers (8 mm diameter) are less effective. Carbon filaments (0.1 mm diameter) are ineffective. The p...

متن کامل

Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements

In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007